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A modal analysis study is presented to evaluate the vibroacoustic behaviour of
a cylindrical thin elastic shell of "nite length, extended by two semi-in"nite
perfectly re#ecting cylinders. The shell is immersed in a stationary and non-viscous
#uid extending up to in"nity, and excited by a constant point load travelling
continuously along the circumferential direction at a rotating speed X. An
expression of modal displacement amplitude of the submerged shell is given, which
shows that the shell is exclusively excited only when the circumferential mode
order n equals the harmonic order N of the rotating load. For this rotating
excitation, the vibration and radiation critical speeds are identi"ed. Extensive
numerical results are also presented to illustrate the comparison of vibration and
sound radiation ability in two di!erent #uids, which show that the behaviour of the
shell in water is very di!erent from that of the one in air.
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1. INTRODUCTION

A #uid-loaded cylindrical shell is the basic structural element widely used in many
industrial "elds. Sound radiation from this kind of shell is still an important subject
in the area of noise control up to now. Whether a #uid is considered as light or
heavy has been de"ned in reference [1], in which air can be considered as a light
#uid and water as a heavy #uid in general. Extensive studies on the vibroacoustic
characteristics of the shell subjected to non-moving mechanical point forces have
been done by many researchers [1}8] in the past. However, there are a large
number of cases of practical interest to the industry in which a #uid-loaded
cylindrical shell is excited by a moving load travelling continuously along its
circumference. Liao and Kessel [9], Bogy et al. [10], Shirakawa [11], and Huang
and Soedel [12] have studied the dynamic response of a simply supported
cylindrical shell excited by a circumferentially moving point load of constant
amplitude. Furthermore, Panneton et al. [13] have studied the vibration and sound
radiation behaviour based on previous studies. However, their research was limited
only to the case of a light #uid (e.g. air), and the interaction between the shell and
the #uid was neglected. For the case of a heavy #uid (e.g., water), there exists
a strong structural-acoustic coupling between the shell and the heavy #uid, and the
radiation impedance cannot be neglected. This kind of problem is more di$cult to
0022-460X/99/310079#16 $30.00/0 ( 1999 Academic Press
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analyze and involves a feedback mechanism (cf. reference [2]). Because of this
interaction or coupling, to the author's knowledge, no work has thoroughly
investigated the case of a heavy #uid-loaded shell under a rotating load. This is the
aim of this paper.

To understand the vibroacoustic behaviour of this subject, we use numerical
results based on the well-known modal analysis method frequently used in the area
of structural-acoustic coupling research. Results for radiated power, shell quadratic
velocity and radiation factor are presented and discussed for air and water. In
particular, the phenomena related to the vibration and radiation critical speeds are
analyzed for the two di!erent #uids.

2. BASIC THEORY

The problem under consideration is schematically depicted in Figure 1: a thin
elastic cylindrical shell (exterior radius a, length ¸, thickness h) simply supported
along its two end circumference is immersed in an unbounded #uid whose density is
o
0

and sound speed is c
0
. The #uid is assumed stationary and non-viscous. The

shell is terminated by two semi-in"nite cylindrical rigid ba%es, and is excited at
z"z

0
by a point load rotating with an angular velocity X along the circumference.

A system of cylindrical co-ordinates (r, u, z) is used to de"ne position of points on
the shell surface or in the exterior acoustic mediums. It is assumed that no other
energy in the #uid and the interior of the shell is occupied by vacuo. Then the
problem of vibroacoustic coupling only exists between the shell and the exterior
#uid. This kind of problem can be solved by the vibration equation of the shell, the
Helmholtz equation in the #uid and the corresponding boundary conditions. In
subsequent studies, the time variation factor e~+ut is suppressed for the sake of brevity.

According to the classical assumption of Donnell, the shell equations of motion
are well known as

Eh
1!l2

[L
D
]U#ohu2[I]U"F, (1)
Figure 1. Fluid-loaded cylindrical shell and co-ordinate system.
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where E, l, and o are the Young's modulus, the Poisson ratio, and the density of the
shell material respectively. U"Mu

z
(a,u, z),uu (a,u, z), u

r
(a,u, z)NT is the vector of

the shell displacements in the z, u, r directions at point (a,u, z) on the shell surface.
F is the force vector per unit area exciting the shell:

F"G
0
0

!f (a, u, z)#p(a, u, z) H , (2)

where f (a, u, z) is the rotating force given by reference [13], and p(a, u, z) is the
surface acoustic pressure. Finally, [L

D
] denotes the classical Donnell di!erential

operator for thin shell theory (cf. reference [14]), and [I] is a unit matrix.
It is well known that the Helmholtz equation for the sound pressure p (r, u, z) in

exterior acoustic #uid medium is

(+2#k2)p(r, u, z)"0, (3)

where k is the sound wavenumber in #uids. The sound pressure p(r, u, z) also
satis"es the following boundary condition:

Lp
Lr

(r,u, z) K
r/a

"G
u2o

0
u
r
(a, u, z),

0
0)x)¸,
otherwise. (4)

To solve the sound pressure p (r,u, z) in equation (3), the Green function
G (r,u, z Da,u

1
, z

1
) and corresponding boundary condition for the exterior

Neumann problem must be introduced. Thus, the representation of the shell surface
sound pressure p (a, u, z) is written as

p (a,u, z)"!o
0
u2 P

s

G (a,u, z Da,u
1
, z

1
)u

r
(a,u

1
, z

1
) dS, (5)

where u
r
(a,u

1
, z

1
) is the radial displacement component at another point (a,u

1
, z

1
)

on the shell surface, and S is the surface area of the shell; G (a,u, z Da,u
1
, z

1
) is given

in reference [5] as follows:

G (a, u, z Da,u
1
, z

1
)"!

1
4n2

=
+
n/0

e
n
cosn(u!u

1
) P

`=

~=

H
n
(k

r
a)

k
r
aH

n
(k

r
a)

e+kz Dz~z1 Ddk
z
,

(6)

where k2"k2
z
#k2

r
, H

n
( ) is the nth-order Hankel function, and H @

n
( ) denotes the

derivative of the Hankel function with respect to its arguments; e
n

is Neumann
factor.
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3. THE SHELL RESPONSE

As in most studies, the modal analysis method is addressed again to obtain the
response of the shell. The response of the simply supported shell subjected to the
moving load is a combination of harmonic motions at discrete frequencies NX (cf.
reference [13]). The shell displacement vector in equation (1) can be easily
expanded as a series of the in vacuo simply supported shell modes

;"

1
+
a/0

=
+
n/0

=
+

m/1

Aa
nm

Ua
nm

, (7)

where Ua
nm

and Aa
nm

are the eigenvector and the modal amplitude of the (a, n,m) shell
modes respectively. Ua

nm
has its form as follows:

Ua
nm
"G

D
nm

sinAnu#a
n
2Bcos

mnz
¸

E
nm

cosAnu#a
n
2B sin

mnz
¸

sinAnu#a
n
2B sin

mnz
¸

H . (8)

where (D
nm

, E
nm

, 1) are components of the eigenvector, a"0 (resp. 1) denotes
anti-symmetric (resp. symmetric) shell modes, and n, m respectively the
circumferential order and the longitudinal order.

Inserting equation (7) into equation (1), and using the orthogonality property of
the shell modes, equation (1) can be transformed as

M
nm

[u2
nm

(1!jg)!u2]Aa
nm
"f a

nm
!pa

nm
, (9)

where K
nm

denotes the generalized sti!ness of the shell mode, M
nm

its generalized
mass, u

nm
its natural angular frequencies. f a

nm
is modal exciting force, which is given

in reference [13] as follows:

f a
nm
"

F
0
2

sinA
mnz

0
¸ Bqa

Nn
, (10)

with

qa
Nn
"G

0,
0,
2,
j,
1,

NOn,
N"n"a"0,
N"n"0, a"1,
N"nO0, a"0,
N"nO0, a"1.

(11)

Finally, pa
nm

denotes modal sound pressure widely known as

pa
nm
"!ju

=
+
q/1

Z
nmq

Aa
nq

, (12)
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where Z
nmq

is the radiation impedance of the shell (cf. reference [8]). It expresses the
modal coupling between the longitudinal shell modes (m and q) due to the #uids.

Inserting equation (12) into equation (9), equation (9) can be rewritten as

MM
nm

[u2
nm

(1!jg)!u2]!juZ
nmm

NAa
nm
"f a

nm
#ju

=
+
q/1
qOm

Z
nmq

Aa
nq

, (13)

where g is the loss factor of the shell material, Z
nmm

is the radiation self-impedance,
and Z

nmq
(qOm) is the radiation interaction impedance.

Laulagnet and Guyader [1] point out that while the interaction impedance
Z

nmq
(qOm) has a non-negligible in#uence on sound radiated power, it has very

weak in#uence on vibration velocity. However, when Z
nmq

(qOm) is neglected, even
in radiated power, the general characteristics of the frequency spectrum curves
remain unchanged, though an overestimation of the radiated power is generally
obtained. Because the sound radiation ability (the radiated power and the mean
quadratic velocity) is mainly studied in this paper, for a qualitative analysis, the
interaction impedance Z

nmq
(qOm) can be neglected and an approximation con-

sidered su$cient.
According to the above approximation, equation (13) can be simpli"ed as

Aa
nm
"

f a
nm

[M
nm

(u2
nm
!u2)!uX

nmm
]!j (gM

nm
u2

nm
#uR

nnm
)
, (14)

where R
nmm

is the radiation self-resistance (real part of Z
nmm

), and X
nmm

is the
radiation self-reactance (imaginary part of Z

nmm
). X

nmm
introduces the added mass

and R
nmm

the modal loss by radiation.
Equation (11) shows that the shell can be excited at the frequency NX only when

the harmonic order N of the rotating exciting force is equal to the circumferential
mode order n of the shell. This contrasts with the case of a stationary harmonic
point force, where all circumferential modes can be excited by the force. Hence, by
substituting u in equation (14) with NX, the modal amplitude of the shell can be
obtained:

Aa
Nm

"

(F
0
/2) sin (mnz

0
/¸)q

Na
[M

Nm
(u2

Nm
!(NX)2)!NXX

Nmm
]!j (gM

Nm
u2

Nm
#NXR

Nmm
)
. (15)

Accordingly, one gets the following expression:

DAa
Nm

D"
(F

0
/2) sin (mnz

0
/¸)q

Na
M

Nm
u2

Nm

)
1

J(1!XK j!j2 )2#(g#RK j )2
, (16)

with

j"
NX
u

Nm

, XK "
X

Nmm
M

Nm
u

Nm

, RK "
R

Nmm
M

Nm
u

Nm

. (17)
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Equation (16) shows that DAa
Nm

D becomes maximum at resonance only when

2j3#3XK j2#(XK 2!2#RK 2)j#gRK !XK "0. (18)

Equation (18) can be easily solved and a rational root signed as j
0

is obtained.
Thus, the vibration critical speed is given by

X
c
"j

0
u

Nm
/N"uN

Nm
/N, (19)

where uN
Nm

denotes the resonant angular frequency of the shell. In particular, it is
easily seen that j

0
equals unity when the shell is in vacuo, that is to say, in this case

uN
Nm

"u
Nm

. Furthermore, of practical importance is the "rst vibration critical
speed X(l)

c
of the rotating load, de"ned with respect to N and m as

X(l)
c
"min

N,m
(uN

Nm
/N). (20)

Equation (20) indicates that the "rst vibration critical speed of the shell in #uid is
lower than the one in vacuo, because of the radiation self-impedance.

4. SOUND RADIATION ANALYSIS OF THE SHELL

In this paper, we focus our attention on global quantities to study shell acoustic
radiation. More precisely, we are interested in the calculation of vibroacoustic
indicators consisting of three main coe$cients: the mean radial quadratic velocity
of the shell SuRM 2

r
T, the radiated sound power =

rad
in the #uid, and the radiation

e$ciency p
rad

. These indicators are global in nature, and they are calculated at the
harmonic angular frequencies NX of the load rotational speed X. It can be shown
that they are given by (the radiation interaction impedance Z

nmq
is neglected)

SuRM 2
r
T"

(NX)2
4

1
+
a/0

m.!9

+
m/1

DAa
Nm

D2, =
rad

"

(NX)2
2

1
+
a/0

m.!9

+
m/1

R
Nmm

DAa
Nm

D2,

p
rad

"

=
rad

o
0
c
0
SSuRM 2

r
T

. (21)

Here the series of the longitudinal mode m are truncated to m
.!9

. The selection of
the values of m

.!9
is discussed in detail in reference [1].

In addition, it is well known that, when the shell circumferential wavelength
equals the acoustic wavelength in the exterior medium, an intensive sound radi-
ation will happen. Hence, it is necessary to de"ne the radiation critical rotating
speed as follows:

X(a)
c
"c

0
/a. (22)

In this equation, the radiation critical rotating speed depends on the radius of the
shell a and the sound speed c

0
in the exterior #uid. Equation (22) indicates that

a #uid-loaded cylindrical shell excited by a rotating load will have strong sound
radiation e$ciency if the load travels at a speed greater than or equal to X(a)

c
.



FLUID-LOADED CYLINDRICAL SHELL 85
5. NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical studies are based on a simply supported steel shell
of which the geometrical and mechanical parameters are as follows: length
¸"2)0 m, radius a"0)3 m thickness h"0)005 m, density o"7850 kg/m3,
Young's modulus E"211 GPa, Poisson ratio l"0)3, structural loss factor
g"0)01. The shell is supposed to be immersed in air and water, and water is
characterized by density o

0
"1000 kg/m3 and sound speed c

0
"1500 m/s. The

shell is excited at z
0
"1)0m and the magnitude of the rotating force is F

0
"100 N.

According to equation (20), whether this particular shell is in vacuo or in air, one
can easily get the "rst vibration critical speeds (in cycles per second). They are the
minimum values of (1/2n) (uN

Nm
/N ) for all possible values of N and m. In this case,

they both correspond to N"3 and m"1, and their values are
(1/2n)X (l)

c
"45)5 Hz (see Figure 2). Hence, for such a rotating speed, the (3, 1) shell

mode in vacuo or in air is resonant. In addition, the "rst vibration critical speed in
water is not given here because it depends on the rotating speed X. In addition,
according to equation (22), the radiation critical speeds (1/2n)X (a)

c
for this particular

shell are 182 Hz in air and 796 Hz in water. Thus, in the following numerical
studies, "ve rotating speeds (in cycles per second) (X/2n), i.e. 30, 120, 240, 400 and
800 Hz are selected.

Figures 3}6 show the in#uences of air and water on the resonant angular
frequency uN

Nm
versus the circumferential order N of the shell, for various values of

the longitudinal order m and the rotating speed (X/2n). The resonant angular
frequencies in air are equal to those in vacuo at any value of the rotating speed
(X/2n); that is to say, air has no in#uence on the natural angular frequencies of the
shell in vacuo modes. However, when the #uid is water, the natural angular
frequencies of the shell in vacuo modes decrease obviously as the rotating speed
increases, because of a strong coupling between the shell and water.
Figure 2. Vibration critical speeds versus N of the shell in vacuo or in air.



Figure 3. The in#uence of air on uN
Nm

versus N for selected X /2n (m"1). Key: *, in vacuo; }s},
X/2n"30Hz; }d}, X/2n"120Hz; }n}, X/2n"240Hz; }m}, X/2n"400Hz;}h}, X/2n"800Hz.

Figure 4. The in#uence of air on uN
Nm

versus N for selected X /2n (m"4). Key: *, in vacuo; }s},
X/2n"30Hz; }d}, X/2n"120Hz; }n}, X/2n"240Hz; }m}, X/2n"400Hz;}h}, X/2n"800Hz.
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Figures 7}11 show the mean radial quadratic velocities of the shell in air and
water for the rotating speeds considered above as a function of the frequency. These
spectra are made of discrete harmonics of the rotating speed due to the nature of the
generalized force (see equations (10) and (11)). Both in air and water, it can be seen
that for the rotational speed (X/2n) (30 Hz) less than (1/2n)X(l)

c
(45)5 Hz), there is

only one maximum. For the case of rotating speeds (120, 240 400 and 800 Hz)
greater than (1/2n)X(l)

c
, more and more shell modes are excited. In addition, the

mean radial quadratic velocities decrease as the rotating speeds increase.
Figures 12}16 and 17}21 show respectively the radiated sound powers and the

radiation e$ciencies of the shell in air and water for the "ve rotating speeds selected
above. It is noted that when the rotating speeds (60 and 120 Hz) are lower than the
radiation critical speed (1/2n)X(a) of the shell in air (182 Hz), whether in air or in
c



Figure 5. The in#uence of water on uN
Nm

versus N for selected X /2n (m"1). Key:2, in vacuo; }s},
X/2n"30Hz; }d}, X/2n"120Hz; }n}, X/2n"240Hz; }m}, X/2n"400Hz;}h}, X/2n"800Hz.

Figure 6. The in#uence of water on uN
Nm

versus N for selected X /2n (m"4). Key:2, in vacuo; }s},
X/2n"30Hz; }d}, X/2n"120Hz; }n}, X/2n"240Hz; }m}, X/2n"400Hz;}h}, X/2n"800Hz.

Figure 7. Mean radial quadratic velocity of the shell in di!erent #uids (X/2n 30 Hz). Key: }d}, air;
}s}, water.
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Figure 8. As for Figure 7, but X/2n"120 Hz.

Figure 9. As for Figure 7, but X/2n"240 Hz.

Figure 10. As for Figure 7, but X/2n"400 Hz.
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Figure 11. As for Figure 7, but X/2n"800 Hz.

Figure 12. Radiated sound power of the shell in di!erent #uids (X/2n"30 Hz). Key:*d*, air;
*s*, water.

Figure 13. As for Figure 12, but X/2n"120 Hz.
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Figure 14. As for Figure 12, but X/2n"240 Hz.

Figure 15. As for Figure 12, but X/2n"400 Hz.

Figure 16. As for Figure 12, but X/2n"800 Hz.
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Figure 17. Radiation e$ciency of the shell in di!erent #uids (X/2n"30 Hz). Key: }d}, air; }s}, water.

Figure 18. As for Figure 17, but X/2n"120 Hz.

Figure 19. As for Figure 17, but X/2n"240 Hz.
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Figure 20. As for Figure 17, but X/2n"400 Hz.

Figure 21. As for Figure 17, but X/2n"800 Hz.
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water, the radiated sound powers are small and the radiation e$ciencies are weak.
For rotating speeds (240 and 400 Hz) greater than 182 Hz, both the radiated sound
powers and the radiation e$ciencies in air are strong. However, in this case, the
radiation of the shell in water remains weak. When the rotating speed (800 Hz) is
greater than the radiation critical speed (1/2n)X(a)

c
of the shell in water (796 Hz),

a strong radiation is obtained in water or in air, and the corresponding values of the
radiated powers and radiation e$ciencies in water are bigger than those in air. In
this case, an interesting phenomenon appears in which for air strong radiation
e$ciency is equivalent to strong power radiation, but for water low radiation
e$ciency gives strong power radiation. This conclusion is in correspondence with
the one given in reference [1], in which a non-moving load was considered.

6. CONCLUSIONS

In this paper, a theoretical model has been developed to analyze the
vibroacoustic behaviour of a simply supported cylindrical shell immersed in #uids,
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subjected to a constant point load travelling continuously along its circumference.
It has been shown that the frequency component is a series of equal amplitude
harmonics NX of the rotating speed X and that each of these harmonics excites
exclusively the circumferential mode n"N. As a result, the shell will only exhibit
vibration and sound radiation at these harmonic frequencies. This contrast with the
case of a stationary harmonic point load where all circumferential modes are
excited at the frequency of excitation.

In addition, it has been shown that the vibroacoustic behaviour of a shell
immersed in a heavy #uid is completely di!erent from that of one immersed in
a light #uid. In particular, when the rotational speed is greater or equal to the
radiation critical speed X (a)

c
, an important conclusion is obtained as the same case

of non-moving excitation (cf. reference [1]). It is shown that for light #uids strong
radiation e$ciency is equivalent to strong power radiation. However, this is not the
case for heavy #uids for which an inverse situation occurs: strong power radiation is
obtained for low radiation e$ciency, and weak power radiation for high radiation
e$ciency.
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